If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6w^2+6w-9=0
a = 6; b = 6; c = -9;
Δ = b2-4ac
Δ = 62-4·6·(-9)
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{7}}{2*6}=\frac{-6-6\sqrt{7}}{12} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{7}}{2*6}=\frac{-6+6\sqrt{7}}{12} $
| 4x+5=-3+6x | | 14x+7+20x+15=86 | | (3x-1)^1/3=2 | | x=(3/8)(x-21) | | 2(x-6)-4=28 | | 26x+3.50=8.50 | | 7(n-8)=34-8n | | X=100+0.2X*y | | -4=n+8 | | 6x-15=6+2(x-3) | | -x-5x=-5x-4 | | -6f^2+3f=0 | | 3*5+9t=15t+9 | | 27/4=a+2a | | 2x-3=-4-4(3x+7) | | 2x-(6x+8)=2x-20 | | 4(8+-5u)=-2u+-4 | | 4x+(7x+6)+(7x+4)=172 | | -2m^2+4=0 | | x+3+x+3+x+3=180 | | 2c+9=2c-7 | | 2/3x-5/8=-1/3x-3/4 | | 6(x-5)+2x=18 | | 34=3d+7 | | -9-2(v+10)=-17-v | | 5x-1/2x=17 | | 9r^2-4r-4=0 | | x^-2+3x^-1-10=0 | | 3/8c=9 | | 5x-1/2x=8 | | x-0.63=1.16 | | -2+5x=4x+2 |